If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81-49k^2=0
a = -49; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-49)·81
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*-49}=\frac{-126}{-98} =1+2/7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*-49}=\frac{126}{-98} =-1+2/7 $
| 16d+14=2 | | F(4)=3.14r^2 | | p/2=45 | | X-2-4x=-2x-7+6x | | 4(7-6x)=28 | | 3(5+5b)=135 | | 16t^2+64t+5=0 | | X-13/9=x-23/4 | | -3/4(8n=12)=3(n-3) | | -5(3y-13)+3y=5 | | 14+5n=-4n=17 | | 13=1/3y+5 | | 8x*4=384/3 | | 2x+4x=3x+20 | | X+5(x-2)=3x+11 | | 5(1-5r)-12(4+13r)=138 | | 0x*x^2= | | -2v+5(-6v+4)=180 | | X-4/2+x-8/4=2 | | 72=-4(x-18) | | x-20+x+20=180 | | 3x+8=3x+15 | | 3w=7=19 | | 1/2(2x+6)=5x-6 | | 36h^2-121=0 | | -42-14=7x | | -1/2(x-6)+7=35 | | 2/3m-3=3/8m+1/4m | | -12(1-10b)+3(4b-11)=87 | | 9x+7-4x=-2x-7+6x | | -r/9+10=11 | | 3(x+5)=9x+15-6x |